본문 바로가기
반응형

탈설계4

5.20 혼합기(Mixer) – 탈설계 성능 2024.07.22 - [가스터빈(Gas Turbine) 성능 이론] - 5.19 혼합기(Mixer) - 설계점 성능 및 기본 사이징 5.19 혼합기(Mixer) - 설계점 성능 및 기본 사이징5.19 혼합기(Mixer) - 설계점 성능 및 기본 사이징 터보팬의 경우, 공통 추진 노즐을 통해 배기되기 전에 뜨거운 기류와 차가운 기류를 결합하기 위해 믹서를 사용할 수 있습니다. 분리형 제트 터보wandererkator.com   5.20 혼합기(Mixer) – 탈설계 성능 5.20.1 탈설계 운용 혼합 엔진이 높은 정격에서 설계점에서 조절되면 추진 노즐 팽창비가 떨어집니다. 2.5 미만으로 떨어지면 혼합기 총 추력 이득이 빠르게 떨어집니다. 이는 높은 비행 마하 수일 때보다 정적일 때 더 높은 추력비에서 .. 2024. 10. 2.
5.18 기계적 손실 – 설계 성능 저하 5.18 기계적 손실 – 설계 성능 저하 5.18.1 기계적 효율성 탈설계 조건의 경우, 베어링 및 풍손 손실은 관련 공식을 사용하여 계산할 수 있습니다. 그런 다음 이를 결합하여 샤프트 동력 균형에 적용되는 기계적 효율성을 도출합니다. (마찬가지로 기계적 효율을 계산하지 않고도 압축기 구동력에 출력을 추가할 수 있지만 해당 값을 보는 것이 유익합니다.) 5.18.2 엔진 보기류 탈설계 작동의 경우, 엔진 보기류 손실은 작으며, 예를 들어 전기 액체 연료 펌프가 연소기에 필요한 것 이상으로 과잉 연료를 공급하더라도 나머지는 연료 탱크로 다시 유출되기 때문에 극단적으로 자주 변하지는 않습니다. 따라서 탈설계 운용 전반에 걸쳐 동력 추출을 일정하게 유지하는 것이 종종 허용됩니다. 기계적으로 구동되는 펌프는 .. 2024. 7. 17.
5.14 덕트 - 탈 설계 성능 5.14.1 손실 계수 람다 덕트 형상이 설계 절차에 의해 수정되면 람다 대비 입구 스월 각도의 특성이 고정됩니다. 이 규칙의 유일한 예외는 효과적인 형상이 크게 수정되는 것과 같이 극적인 유동 분리가 발생하는 경우입니다. 입구 스월은 일반적으로 압축기 또는 팬의 덕트 하류에 대한 작동 범위 전체에서 일정합니다. 이는 일반적으로 마지막 구성 요소가 일정한 출구 유동 각도를 갖는 스테이터이기 때문입니다. 따라서 일반적으로 탈 설계 조건에서 스월 각도에 상당한 변화가 있는 터빈 이후에서만 발생합니다. 일반적으로 출구 스월 각은 터보샤프트 엔진의 마지막 터빈에 대한 탈 설계 조건에서만 극적으로 변하며, 여기서 대기로 배기하면 팽창비에서 더 큰 변화가 발생합니다. 파워 터빈이 동시에 작동해야 하므로 출구 스월 .. 2023. 8. 2.
5.5.5 기본 크기 매개변수 가이드 / 5.6 팬 - 탈 설계 성능 2023.06.02 - [가스터빈(Gas Turbine) 성능 이론] - 5.5 팬 – 설계점 성능 및 기본 크기 조정 5.5.5 기본 크기 매개변수 가이드 사용되는 매개변수는 5.1 절에서 정의된 축류 압축기와 유사하게 계산되며, 1단 팬에 대한 지침을 제시합니다. 입구 마하수 입구 마하수는 일반적으로 0.55에서 0.65 사이이며, 최곳값은 군용에 전형적입니다. 이 값은 팬 전 면적을 최소화해야 하는 필요성으로 인해 축류 압축기보다 높으며, 또한 아래에 설명된 바와 같이 높은 팁 상대 마하수가 허용됩니다. 팁 상대 마하수 팬은 대개 팁 부분에서 초음속이 나타납니다. 이는 터보팬이 최소한의 전면 면적에서 높은 질 유량을 가져야 하며, 하류 단이 없기 때문에 높은 마하수가 가능하기 때문입니다. 일반적으로.. 2023. 6. 6.
반응형

loading