본문 바로가기
반응형

DESIGN14

5.7.4 압력 손실 2023.06.07 - [가스터빈(Gas Turbine) 성능 이론] - 5.7 연소기 – 설계점 성능 및 기본 크기 5.7.4 압력 손실 압축기 출구 마하수는 대략 0.2–0.35입니다. 이것은 캔 주변의 연소기 입구 디퓨저에서 0.05와 0.1 사이로 줄여야 합니다. 그렇지 않으면 캔 벽면에서 압력 손실이 허용할 수 없을 정도로 높아질 것입니다. 연소기 입구 디퓨저의 설계점 성능은 5.13절에서 설명하고 있습니다. 연소기 냉각 손실은 벽을 통해 주입되는 공기 흐름으로 인해 발생합니다. 좋은 설계는 기하학적 구속조건에 따라 설계점에서 전압력의 2~4% 값을 갖습니다. 비행 마하수가 높은 경우, 캔 외부의 항공 엔진 마하수는 정면 영역을 최소화하기 위해 원하는 값보다 크게 설계될 수 있습니다. 이 같은 .. 2023. 6. 19.
5.7 연소기 – 설계점 성능 및 기본 크기 2023.06.06 - [가스터빈(Gas Turbine) 성능 이론] - 5.5.5 기본 크기 매개변수 가이드 / 5.6 팬 - 탈 설계 성능 5.7 연소기 – 설계 점 성능 및 기본 크기 연소 시스템은 모든 가스 터빈 구성요소 중에서 가장 분석하기 어려운 부분입니다. 최근 몇 년 동안 특히 '전산유체역학' 또는 'CFD'를 통해 설계 방법론을 개선하는 데 상당한 진전이 있었지만 설계 프로세스의 대부분은 여전히 경험적으로 도출된 설계 규칙에 의존하고 있습니다. 따라서 중요한 연소 시스템 장비 테스트 프로그램은 엔진 개발 프로그램 이전과 병행에 필수적입니다. 이 장비 테스트는 설계점 및 위의 Idle 설계 작업뿐만 아니라 시동, 점화 및 재점화와 같은 시동 중에 발생하는 매우 어려운 현상도 해결해야 합니다.. 2023. 6. 7.
5.5.5 기본 크기 매개변수 가이드 / 5.6 팬 - 탈 설계 성능 2023.06.02 - [가스터빈(Gas Turbine) 성능 이론] - 5.5 팬 – 설계점 성능 및 기본 크기 조정 5.5.5 기본 크기 매개변수 가이드 사용되는 매개변수는 5.1 절에서 정의된 축류 압축기와 유사하게 계산되며, 1단 팬에 대한 지침을 제시합니다. 입구 마하수 입구 마하수는 일반적으로 0.55에서 0.65 사이이며, 최곳값은 군용에 전형적입니다. 이 값은 팬 전 면적을 최소화해야 하는 필요성으로 인해 축류 압축기보다 높으며, 또한 아래에 설명된 바와 같이 높은 팁 상대 마하수가 허용됩니다. 팁 상대 마하수 팬은 대개 팁 부분에서 초음속이 나타납니다. 이는 터보팬이 최소한의 전면 면적에서 높은 질 유량을 가져야 하며, 하류 단이 없기 때문에 높은 마하수가 가능하기 때문입니다. 일반적으로.. 2023. 6. 6.
5.3.4 기본 사이징 매개변수 가이드 2023.05.17 - [가스터빈(Gas Turbine) 성능 이론] - 5.3 원심 압축기 – 설계 포인트 성능 및 기본 크기 5.3.4 기본 사이징 매개변수 가이드 원심 압축기의 치수 설정을 위한 주요 매개변수에 대한 지침은 다음과 같습니다. 많은 매개변수가 축류 압축기에 공통적이므로 해당 정의는 5.1절에 나와 있습니다. - 평균 입구 마하수 인듀서로 유입되는 평균 마하수는 0.4–0.6 범위에 있어야 합니다. - 인듀서 팁 상대 마하수 인듀서 팁 상대 마하수 값 0.9 및 1.3은 각각 보수적이고 도전적인 수치입니다. 축-반경(axi-centrifugal) 압축기의 원심 후단의 경우 더 낮은 값이 불가피할 수 있습니다. - 회전 속도 회전 속도는 비속도를 최적화하는 동시에 여기서 논의된 다른 매개.. 2023. 5. 23.
반응형

loading