본문 바로가기
반응형

Performance32

5.15 공기 시스템, 터빈 NGV 및 블레이드 냉각 – 설계점 성능 2023.08.02 - [가스터빈(Gas Turbine) 성능 이론] - 5.14 덕트 - 탈 설계 성능 5.15 공기 시스템, 터빈 NGV 및 블레이드 냉각 – 설계점 성능 5.15.1 구성 엔진 공기 시스템은 주 가스 경로와 평행한 여러 개의 공기 흐름 경로로 구성됩니다. 각각의 공기는 외부 케이싱의 슬롯을 통해 또는 드럼의 축 방향 틈이나 구멍을 통해 내부에서 압축기를 통해 부분적인 방식을 통해 추출됩니다. 그런 다음 공기는 일련의 오리피스와 미로 모양의 핀 밀폐 형상을 통해 내부적으로 전달되거나 엔진 케이싱 외부의 파이프를 통해 외부적으로 전달됩니다. 추출 지점이 빠를수록 공기에서 수행되는 일이 적어져 성능에 대한 손실이 낮아집니다. 그러나 추출 지점은 공기 시스템을 통한 손실을 허용한 후 목표한.. 2023. 8. 19.
5.13.3 가스터빈 덕트 구성 2023.07.13 - [가스터빈(Gas Turbine) 성능 이론] - 5.13 덕트 – 설계 5.13.3 구성 각 가스 터빈 덕트 유형에는 적용 분야와 설계 회사마다의 문화 및 경험에 따라 많은 수의 잠재적 형상이 있습니다. 여기에서 그에 대한 모든 것을 설명하기에는 너무 많습니다. 그러나 발생하는 모습 따른 성격들을 제공하고 관련된 공기 역학적 및 기계적 설계 과제를 제공하기 위해 그림 5.37은 각 덕트 유형에 대한 가장 일반적인 구성을 제시합니다. 산업용 엔진 흡입구에 대해 표시된 것은 핫 엔드 드라이브에서 가장 일반적입니다. 일반적으로 플레어 업스트림에는 큰 플레넘이 있습니다. 스노우 후드는 주변에서 수직으로 위쪽으로 공기를 가져오고 필터와 소음기는 수직 다운테이크에 위치하도록 배열됩니다. 엔.. 2023. 7. 17.
5.11 방사형 터빈(Radial turbine) 2023.07.03 - [가스터빈(Gas Turbine) 성능 이론] - 5.10.2 터빈 설계의 선형 스케일링 맵에 미치는 영향 5.11 방사형 터빈 – 설계 방사형 터빈에서 유동은 원심의 방사되는 방향에서 축 방향으로 변경됩니다. 이는 축류 단계에 대한 유동 각도 및 환형 라인만 변경하여 달성할 수 있는 것보다 훨씬 더 큰 면적비 및 팽창비를 가능하게 합니다. 5.11.1 구성 및 속도 삼각형 그림 5.32는 방사형 터빈의 일반적인 블레이딩 구성을 나타냅니다. 스테이지는 NGV(Nozzle Guide Vanes) 링과 휠이라고 하는 블레이드 디스크로 구성됩니다. 축류 형 터빈과 달리 유동은 대부분 방사형 방향으로 NGV로 들어갑니다. 이를 달성하기 위해 사용되는 터빈 입구 덕트 형상은 주로 연소기 유.. 2023. 7. 7.
5.9.4 기본 사이징 매개변수 안내 입구 마하수/5.10 축류형 터빈 - 탈 설계 성능 2023.06.22 - [가스터빈(Gas Turbine) 성능 이론] - 5.9 축류 터빈 – 설계점 성능 및 기본 크기 조정 가이드 5.9.4 기본 사이징 매개변수 안내 입구 마하수 업스트림 덕트의 압력 손실을 최소화하고 가스가 NGV 표면을 따라 모든 지점에서 가속되도록 하려면 첫 번째 단에 대한 평균 입구 마하수가 이상적으로 0.2 미만이어야 합니다. 후속 단에서는 더 높을 수 있습니다. 블레이드 입구 허브의 상대 마하수 블레이드 유로 전체에서 블레이드에 상대적인 가속도가 있도록 하려면 해당 값이 0.7 미만이어야 합니다. 확산이 발생하면 분리 및 압력 손실 증가로 이어질 수 있습니다. NGV 출구 각도는 65도에서 73도 사이입니다. 회전 속도 림 속도, 팁 속도 및 (AN)^2를 기계적 무결성에.. 2023. 6. 26.
반응형

loading